排序
扩散模型(Diffusion Model)
扩散模型的基本原理 Denoising Diffusion Probabilistic Models (DDPM) 是一种利用扩散过程来生成样本的深度学习模型。其主要的灵感来源于扩散过程,通过逐渐增加噪音来模糊一个初始的图像,并...
基于ResNet模型和Web部署的脑瘤检测
项目背景 本实践任务旨在利用深度学习技术对人脑中的脑瘤进行分类。我们的数据集包含四个主要类别:无肿瘤(no_tumor)、胶质瘤(glioma_tumor)、脑膜瘤(meningioma_tumor)和垂体瘤(pituita...
变分自编码器(VAE)算法详解
VAE模型简明指导 VAE最想解决的问题是如何构造编码器和解码器,使得图片能够编码成易于表示的形态,并且这一形态能够尽可能无损地解码回原真实图像。 这似乎听起来与PCA(主成分分析)有些相似...
Graph Sample and Aggregate Network(GraphSAGE)
不管是GraphSAGE,还是GCN,它们的核心思想其实与朴素的GNN思想一致,都是每个节点根据图的连接结构,通过聚合邻居信息来更新自身节点的信息,再把更新后的节点向量送入神经网络层做进一步的学...
Graph Attention Networks(GAT)
本章来学习一下图注意力网络GAT,首先对标GCN,来谈谈它们的优缺点。 GCN是处理transductive任务的一把利器,transductive任务是指:训练阶段与测试阶段都基于同样的图结构,如下图所示。 ...
Graph Convolutional Network(GCN)
这里先回顾一下之前讲解的朴素图神经网络,如下图: 朴素图神经网络 图中左上角方框部分可以看作图神经网络的初始状态。以 1 号节点为例, 在图神经网络中, 信息的传递是先汇聚一号节点的邻居节...
图神经网络(GNN)
引言 图神经网络(Graph Neural Networks,GNNs)是一种专为图数据设计的深度学习模型。它们能够直接在图结构上操作,捕捉节点间的复杂关系和图的全局结构特征。图神经网络在多种任务中表现出色...
图神经网络:图的向量化
引言 图神经网络(Graph Neural Networks,GNNs)是一种专门用于处理图形数据的神经网络架构。图形数据是一种非欧几里得数据,其中主要包括节点(vertices)和边(edges),节点代表实体,边表...
Cycle-Consistent Adversarial Networks(CycleGAN)
引言 CycleGAN是一个革命性的技术,它在图像处理和计算机视觉领域开辟了新的可能性,尤其是在图像到图像的转换任务中。这项技术能够在没有成对示例的情况下,将一种风格的图像转换成另一种风格...
Improved GANs
“Improved Techniques for Training GANs”是一篇由Ian J. Goodfellow 和他的同事在 2016 年发表的论文,这篇论文对生成对抗网络(GANs)的训练过程做出了重要的改进和提议。这些改进主要集中...