AI应用方向 第3页
AI应用方向模块聚焦于人工智能在不同领域的经典应用算法,包括图像、自然语言处理(NLP)和图结构分析等。通过深入讲解每个方向的核心技术,帮助学习者掌握如何将AI算法应用于实际问题。无论是图像识别、文本分析还是图数据的建模与推理,这里都提供了全面的知识和技能,助你在多种应用场景中获得实际操作能力。
Swin Transformer:窗口化的Transformer-点头深度学习网站

Swin Transformer:窗口化的Transformer

0.引言 Swin Transformer是2021年微软研究院发表在ICCV(International Conference on Computer Vision)上的一篇文章,并且已经获得ICCV 2021最佳论文(Best Paper)的荣誉称号。Swin Transfor...
点点的头像-点头深度学习网站点点7个月前
0667
Graph Sample and Aggregate Network(GraphSAGE)-点头深度学习网站

Graph Sample and Aggregate Network(GraphSAGE)

不管是GraphSAGE,还是GCN,它们的核心思想其实与朴素的GNN思想一致,都是每个节点根据图的连接结构,通过聚合邻居信息来更新自身节点的信息,再把更新后的节点向量送入神经网络层做进一步的学...
点点的头像-点头深度学习网站点点5个月前
010711
EfficientNet:轻量化网络-点头深度学习网站

EfficientNet:轻量化网络

1.EfficientNetV1 EfficientNet源自Google Brain的论文EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks。从标题中可以看出,这篇论文最主要的创新点是模型缩放。论...
点点的头像-点头深度学习网站点点7个月前
09910
GPT-3:大语言模型的爆发-点头深度学习网站

GPT-3:大语言模型的爆发

引言 在科技界,GPT3的热潮正如火如荼地展开。这类庞大的语言模型(比如GPT3)开始以它们惊人的能力让我们惊叹。虽然现在对于大多数企业来说,将它们直接应用于面对客户的业务中还不够可靠,但...
点点的头像-点头深度学习网站点点6个月前
06515
自注意力机制(Self-Attention)-点头深度学习网站

自注意力机制(Self-Attention)

Transformer模型中最关键部分就是自注意力(Self-Attention)机制,正如 Transformer 的论文的标题是“Attention Is All You Need”!以文本问题为例来讲解这个机制。在处理文本问题时,自注意...
点点的头像-点头深度学习网站点点6个月前
05813
卷积的九大变体算法-点头深度学习网站

卷积的九大变体算法

引言 卷积神经网络(CNN)的核心在于其多样化的卷积技术,每种技术针对不同的应用和性能需求有着独特的优势。逐通道卷积和逐点卷积关注单独通道的特征提取和通道间信息的融合。深度可分离卷积结...
点点的头像-点头深度学习网站点点7个月前
08815
Graph Convolutional Network(GCN)-点头深度学习网站

Graph Convolutional Network(GCN)

这里先回顾一下之前讲解的朴素图神经网络,如下图: 朴素图神经网络 图中左上角方框部分可以看作图神经网络的初始状态。以 1 号节点为例, 在图神经网络中, 信息的传递是先汇聚一号节点的邻居节...
点点的头像-点头深度学习网站点点5个月前
08215
长短期记忆网络(LSTM)和门控循环单元(GRU)算法详解-点头深度学习网站

长短期记忆网络(LSTM)和门控循环单元(GRU)算法详解

引言 传统循环神经网络在处理长序列时面临梯度消失或爆炸问题。梯度消失是指在训练过程中,误差反向传播时,梯度随着时间步数的增加而指数级衰减。梯度爆炸则正好相反,这会导致模型难以学习到...
点点的头像-点头深度学习网站点点6个月前
0539
Graph Attention Networks(GAT)-点头深度学习网站

Graph Attention Networks(GAT)

本章来学习一下图注意力网络GAT,首先对标GCN,来谈谈它们的优缺点。 GCN是处理transductive任务的一把利器,transductive任务是指:训练阶段与测试阶段都基于同样的图结构,如下图所示。 ...
点点的头像-点头深度学习网站点点5个月前
011110
 VGGNet: 探索深度的力量-点头深度学习网站

 VGGNet: 探索深度的力量

1.VGGNet模型总览 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员Karen Simonyan和Andrew Zisserman研发出了新的深度卷积神经网络:VGGNet,并在ILSVRC2...
点点的头像-点头深度学习网站点点7个月前
06611