AI应用方向 第5页
AI应用方向模块聚焦于人工智能在不同领域的经典应用算法,包括图像、自然语言处理(NLP)和图结构分析等。通过深入讲解每个方向的核心技术,帮助学习者掌握如何将AI算法应用于实际问题。无论是图像识别、文本分析还是图数据的建模与推理,这里都提供了全面的知识和技能,助你在多种应用场景中获得实际操作能力。
MobileNet:轻量化模型-点头深度学习网站

MobileNet:轻量化模型

1.MobileNet V1 MobileNet系列是由谷歌公司的Andrew G. Howard等人于2016年提出的轻量级网络结构,并于2017年发布在arXiv上。MobileNet系列的特点是模型小、计算速度快,适合部署到移动端或者嵌...
点点的头像-点头深度学习网站点点7个月前
07912
ResNet:神来之“路”-点头深度学习网站

ResNet:神来之“路”

0.引言 深度残差网络(Deep Residual Network, ResNet)的提出是基于卷积算法处理图像问题领域的一件里程碑事件。ResNet在2015年发表当年取得了图像分类、检测等5项大赛第一,并再次刷新了CNN模...
点点的头像-点头深度学习网站点点7个月前
08111
GoogLeNet:探索宽度的力量-点头深度学习网站

GoogLeNet:探索宽度的力量

0.引言 在2014年的ImageNet挑战赛(ILSVRC14)上,GoogLeNet和VGGNet成为了当年的双雄。GoogLeNet获得了图片分类大赛的第一名,VGGNet紧随其后。这两种模型的共同特点是网络深度更深。VGGNet是...
点点的头像-点头深度学习网站点点7个月前
0749
ZFNet:卷积原理的深度解析-点头深度学习网站

ZFNet:卷积原理的深度解析

0.引言 ZFNet模型是由Matthew D. Zeiler和Rob Fergus在AlexNet的基础上提出的大型卷积网络,获得了2013年ILSVRC图像分类竞赛的冠军。其错误率为11.19%,较去年的AlexNet下降了5%。ZFNet解...
点点的头像-点头深度学习网站点点7个月前
014812
 VGGNet: 探索深度的力量-点头深度学习网站

 VGGNet: 探索深度的力量

1.VGGNet模型总览 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员Karen Simonyan和Andrew Zisserman研发出了新的深度卷积神经网络:VGGNet,并在ILSVRC2...
点点的头像-点头深度学习网站点点7个月前
06611
AlexNet:深度学习崛起的标志-点头深度学习网站

AlexNet:深度学习崛起的标志

 1.AlexNet理论 AlexNet模型与LeNet模型有很多相似之处,它可以被看作是LeNet的改进版本,都由卷积层和全连接层构成。然而,AlexNet之所以能够在ImageNet比赛中大获成功,还要归功于其独特...
点点的头像-点头深度学习网站点点7个月前
011910
卷积神经网络(CNN)算法详解-点头深度学习网站

卷积神经网络(CNN)算法详解

引言 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks, FNN),是深度学习的代表算法之一 。 对卷积神...
点点的头像-点头深度学习网站点点7个月前
0519
神经网络算法详解-点头深度学习网站

神经网络算法详解

引言 神经网络,作为人工智能和机器学习领域的核心技术之一,具有极其重要的意义。它们通过模拟人类大脑的工作机制,使计算机能够学习和识别复杂的模式和数据。这种能力使得神经网络在诸多领域...
点点的头像-点头深度学习网站点点7个月前
0727