AI应用方向 第5页
AI应用方向模块聚焦于人工智能在不同领域的经典应用算法,包括图像、自然语言处理(NLP)和图结构分析等。通过深入讲解每个方向的核心技术,帮助学习者掌握如何将AI算法应用于实际问题。无论是图像识别、文本分析还是图数据的建模与推理,这里都提供了全面的知识和技能,助你在多种应用场景中获得实际操作能力。
f-GAN-点头深度学习网站

f-GAN

引言 2016年的论文《f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization》引入了一种新的生成对抗网络(GAN)框架,名为f-GAN。这篇论文通过将传统的GAN训...
点点的头像-点头深度学习网站点点5个月前
0539
Transformer算法详解-点头深度学习网站

Transformer算法详解

算法简介 Transformer架构于2017年6月推出。最初的研究重点是自然语言处理领域的翻译任务。随后,几个具有影响力的模型被引入,包括: (1)2018年6月:GPT,第一个预训练的Transformer模型,用...
点点的头像-点头深度学习网站点点7个月前
0526
MLP-Mixer: 并肩卷积与自注意,多层感知机的神奇魔法-点头深度学习网站

MLP-Mixer: 并肩卷积与自注意,多层感知机的神奇魔法

0.引言 MLP-Mixer模型是谷歌AI团队于2021年初发表的文章,题为MLP-Mixer: An all-MLP Architecture for Vision。在计算机视觉领域的历史上,卷积神经网络一直是首选的模型。然而最近,注意力机...
点点的头像-点头深度学习网站点点6个月前
05214
卷积神经网络(CNN)算法详解-点头深度学习网站

卷积神经网络(CNN)算法详解

引言 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks, FNN),是深度学习的代表算法之一 。 对卷积神...
点点的头像-点头深度学习网站点点7个月前
0519
RepVGG:新型卷积神经网络架构-点头深度学习网站

RepVGG:新型卷积神经网络架构

1、设计动机 设计RepVGG的初衷是为了解决许多流行的深度学习模型在追求更高性能的过程中不断增加结构复杂性的问题。例如,为了提高性能,许多模型采用了如残差连接、瓶颈设计、组卷积等复杂设计...
点点的头像-点头深度学习网站点点7个月前
0495
循环神经网络(RNN)算法详解-点头深度学习网站

循环神经网络(RNN)算法详解

引言 在第三章中,我们探讨了全连接神经网络(FCNN)和卷积神经网络(CNN)的结构,以及它们的训练方法和使用场景。值得注意的是,这两种网络结构都是处理独立的输入数据,即它们无法记忆或理解...
点点的头像-点头深度学习网站点点6个月前
0475
Wasserstein GAN-点头深度学习网站

Wasserstein GAN

引言 WGAN,即Wasserstein GAN,旨在解决传统GAN训练中的一些问题,尤其是训练不稳定和梯度消失。WGAN通过使用Wasserstein距离(Earth-Mover距离或EM距离)来衡量真实数据分布和生成数据分布之...
点点的头像-点头深度学习网站点点5个月前
04411
GPT-2:迈向先进语言模型的大步-点头深度学习网站

GPT-2:迈向先进语言模型的大步

2023年,我们见证了机器学习的一个耀眼应用——OpenAI的Chat GPT。这个模型不仅仅展现了写作连贯、充满激情的文章的能力,更超出了我们对当前语言模型能力的预期。Chat GPT虽然并非一个特别新颖...
点点的头像-点头深度学习网站点点6个月前
04210