排序
决策树(Decision tree)
算法引言 决策树是一种非常直观的机器学习算法,它模仿了我们日常生活中的决策过程。想象一下,你要决定周末去哪里玩,这个决定可能会基于一系列问题:天气怎么样?交通方便吗?费用多少?根据...
聚类算法总结
1. K均值(K-Means) 计算效率高,适合大数据集。 结果易于解释。 缺点: 需要预先设定聚类数量 K。 对异常值敏感。 假设聚类为凸形且各向同性,可能不适用于复杂形状的数据分布。 初始中心点的...
聚类算法之高斯混合模型聚类 (Gaussian Mixture Model, GMM)
高斯混合模型(GMM)是统计模型中的一颗璀璨之星,它为数据提供了一种复杂而又强大的表示方法。在机器学习的许多领域,从模式识别到图像处理,GMM都被广泛地采用和研究。它背后的核心思想是使用...
反向传播算法(Back Propagation)
反向传播算法 梯度下降和反向传播是神经网络训练过程中两个非常重要的概念,它们密切相关。梯度下降是一种常用的优化算法,它的目标是找到一个函数的最小值或最大值。在神经网络中,梯度下降算...
神经网络层结构的意义与维度诅咒
神经网络的层级结构 之前的博文中讲解了神经网络算法和深度学习模型,读者们是否有疑问:为什么神经网络模型要有层级结构?深度学习模型为什么需要这么多的隐藏层? 答案很简单,这是算法分析数...
过拟合与欠拟合
过拟合与欠拟合 过拟合和欠拟合现象的定义 过拟合和欠拟合模型是深度学习模型在训练过程中比较容易出现的不好的现象。 当模型的表现能力弱于事件的真实表现时,会出现欠拟合现象。某个非线性模...
支持向量机(SVM)
什么是SVM? SVM 是一类强大的用于分类和回归问题的监督学习算法。 在分类方面,SVM 可以被视为最大间隔线性分类器。 SVM 使用的目标明确鼓励低样本外误差(良好的泛化性能)。 通过最大化类的超...
粒子群算法(Particle Swarm Optimization)
算法背景 粒子群优化算法(Particle Swarm Optimization,PSO)的灵感来源于鸟群或鱼群的觅食行为。想象一下,你在公园里看到一群鸟,它们在空中飞翔,寻找食物。每只鸟都不知道食物在哪里,但...