排序
GPT-3:大语言模型的爆发
引言 在科技界,GPT3的热潮正如火如荼地展开。这类庞大的语言模型(比如GPT3)开始以它们惊人的能力让我们惊叹。虽然现在对于大多数企业来说,将它们直接应用于面对客户的业务中还不够可靠,但...
VGGNet: 探索深度的力量
1.VGGNet模型总览 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员Karen Simonyan和Andrew Zisserman研发出了新的深度卷积神经网络:VGGNet,并在ILSVRC2...
图神经网络:图的向量化
引言 图神经网络(Graph Neural Networks,GNNs)是一种专门用于处理图形数据的神经网络架构。图形数据是一种非欧几里得数据,其中主要包括节点(vertices)和边(edges),节点代表实体,边表...
Improved GANs
“Improved Techniques for Training GANs”是一篇由Ian J. Goodfellow 和他的同事在 2016 年发表的论文,这篇论文对生成对抗网络(GANs)的训练过程做出了重要的改进和提议。这些改进主要集中...
编码器-解码器模型(Encoder-Decoder)
编码器-解码器模型简介 Encoder-Decoder算法是一种深度学习模型结构,广泛应用于自然语言处理(NLP)、图像处理、语音识别等领域。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。...
生成对抗网络(GAN)
引言 生成对抗网络(GAN)是深度学习领域的一个革命性概念,为数据生成提供了一种全新的方式。其名称中的“对抗”体现了核心思想:通过两个神经网络之间的相互竞争来生成数据。这两个网络分别是...
自注意力机制(Self-Attention)
Transformer模型中最关键部分就是自注意力(Self-Attention)机制,正如 Transformer 的论文的标题是“Attention Is All You Need”!以文本问题为例来讲解这个机制。在处理文本问题时,自注意...
Transformer算法详解
算法简介 Transformer架构于2017年6月推出。最初的研究重点是自然语言处理领域的翻译任务。随后,几个具有影响力的模型被引入,包括: (1)2018年6月:GPT,第一个预训练的Transformer模型,用...
f-GAN
引言 2016年的论文《f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization》引入了一种新的生成对抗网络(GAN)框架,名为f-GAN。这篇论文通过将传统的GAN训...
RepVGG:新型卷积神经网络架构
1、设计动机 设计RepVGG的初衷是为了解决许多流行的深度学习模型在追求更高性能的过程中不断增加结构复杂性的问题。例如,为了提高性能,许多模型采用了如残差连接、瓶颈设计、组卷积等复杂设计...