排序
f-GAN
引言 2016年的论文《f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization》引入了一种新的生成对抗网络(GAN)框架,名为f-GAN。这篇论文通过将传统的GAN训...
MobileNet:轻量化模型
1.MobileNet V1 MobileNet系列是由谷歌公司的Andrew G. Howard等人于2016年提出的轻量级网络结构,并于2017年发布在arXiv上。MobileNet系列的特点是模型小、计算速度快,适合部署到移动端或者嵌...
MLP-Mixer: 并肩卷积与自注意,多层感知机的神奇魔法
0.引言 MLP-Mixer模型是谷歌AI团队于2021年初发表的文章,题为MLP-Mixer: An all-MLP Architecture for Vision。在计算机视觉领域的历史上,卷积神经网络一直是首选的模型。然而最近,注意力机...
卷积神经网络(CNN)算法详解
引言 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks, FNN),是深度学习的代表算法之一 。 对卷积神...
MetaFormer: 万法归一,构建未来的Transformer模板
0.引言 经过前几个MLP模型的介绍,相信很多读者都会思考一个问题:在计算机视觉任务中,哪种算法更适合呢?事实上,MetaFormer模型给出了答案:算法并不是最重要的,框架结构才是关键。MetaForm...
SENet:通道维度的注意力机制
0.引言 SENet于2017.9提出,其通过显式地建模卷积特征通道之间的相互依赖性来提高网络的表示能力。即通道维度上的注意力机制。SE模块仅需微小的计算成本,却产生了显著的性能改进。SENet Block...
GPT-2:迈向先进语言模型的大步
2023年,我们见证了机器学习的一个耀眼应用——OpenAI的Chat GPT。这个模型不仅仅展现了写作连贯、充满激情的文章的能力,更超出了我们对当前语言模型能力的预期。Chat GPT虽然并非一个特别新颖...
ViT:视觉Transformer
0.引言 最初提出Transformer算法是为了解决自然语言处理领域的问题,Transformer在该领域获得了巨大的成功,几乎超越了循环神经网络模型(RNN),并成为自然语言处理领域的新一代基线模型。论文...
Cycle-Consistent Adversarial Networks(CycleGAN)
引言 CycleGAN是一个革命性的技术,它在图像处理和计算机视觉领域开辟了新的可能性,尤其是在图像到图像的转换任务中。这项技术能够在没有成对示例的情况下,将一种风格的图像转换成另一种风格...
DenseNet:特征复用真香
0.引言 作为CVPR2017年的最佳论文,DenseNet模型脱离了通过加深网络层数(如VGGNet、ResNet)和加宽网络结构(如GoogLeNet)来提升网络性能的定式思维。转而从特征的角度考虑,通过特征重用和旁...