排序
f-GAN
引言 2016年的论文《f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization》引入了一种新的生成对抗网络(GAN)框架,名为f-GAN。这篇论文通过将传统的GAN训...
ConvMixer: 创新之路,卷积与多层感知机的相互借鉴
0.引言 近年来,卷积神经网络一直是计算机视觉任务中的主要架构。然而,最近出现了基于Transformer模型的架构,例如ViT、Swin Transformer等,在许多任务中表现出引人注目的性能。相比于传统的...
卷积神经网络(CNN)算法详解
引言 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks, FNN),是深度学习的代表算法之一 。 对卷积神...
GoogLeNet:探索宽度的力量
0.引言 在2014年的ImageNet挑战赛(ILSVRC14)上,GoogLeNet和VGGNet成为了当年的双雄。GoogLeNet获得了图片分类大赛的第一名,VGGNet紧随其后。这两种模型的共同特点是网络深度更深。VGGNet是...
基于ResNet模型和Web部署的脑瘤检测
项目背景 本实践任务旨在利用深度学习技术对人脑中的脑瘤进行分类。我们的数据集包含四个主要类别:无肿瘤(no_tumor)、胶质瘤(glioma_tumor)、脑膜瘤(meningioma_tumor)和垂体瘤(pituita...
生成对抗网络(GAN)
引言 生成对抗网络(GAN)是深度学习领域的一个革命性概念,为数据生成提供了一种全新的方式。其名称中的“对抗”体现了核心思想:通过两个神经网络之间的相互竞争来生成数据。这两个网络分别是...
Swin Transformer:窗口化的Transformer
0.引言 Swin Transformer是2021年微软研究院发表在ICCV(International Conference on Computer Vision)上的一篇文章,并且已经获得ICCV 2021最佳论文(Best Paper)的荣誉称号。Swin Transfor...
ShuffleNet:轻量化网络
1. ShuffleNet V1 ShuffleNet V1是由旷视科技在2017年底为移动设备打造的轻量级卷积神经网络。其创新之处在于采用了组卷积(Group Convolution)和通道打散(Channel Shuffle)的方法,保证网络...
Vitis-AI量化编译MNIST手写数字识别
项目背景 在当前的数字化时代,快速准确的手写数字识别技术在各个领域都发挥着越来越重要的作用,尤其是在银行、邮政服务和数字化存档等行业。这些应用常常要在资源受限的环境中运行,例如嵌入...
神经网络算法详解
引言 神经网络,作为人工智能和机器学习领域的核心技术之一,具有极其重要的意义。它们通过模拟人类大脑的工作机制,使计算机能够学习和识别复杂的模式和数据。这种能力使得神经网络在诸多领域...