影像方向共35篇
Graph Convolutional Network(GCN)-点头深度学习网站

Graph Convolutional Network(GCN)

这里先回顾一下之前讲解的朴素图神经网络,如下图: 朴素图神经网络 图中左上角方框部分可以看作图神经网络的初始状态。以 1 号节点为例, 在图神经网络中, 信息的传递是先汇聚一号节点的邻居节...
点点的头像-点头深度学习网站点点5个月前
08215
卷积的九大变体算法-点头深度学习网站

卷积的九大变体算法

引言 卷积神经网络(CNN)的核心在于其多样化的卷积技术,每种技术针对不同的应用和性能需求有着独特的优势。逐通道卷积和逐点卷积关注单独通道的特征提取和通道间信息的融合。深度可分离卷积结...
点点的头像-点头深度学习网站点点7个月前
08815
ConvNeXt:卷积与设计策略的新篇章-点头深度学习网站

ConvNeXt:卷积与设计策略的新篇章

0.引言 自从ViT模型被提出以后,在过去的几年里,Transformer在深度学习领域大杀四方。回顾近几年,在计算机视觉领域发表的文章绝大多数都是基于Transformer模型的,比如2021年ICCV的Best Paper...
点点的头像-点头深度学习网站点点6个月前
06515
MLP-Mixer: 并肩卷积与自注意,多层感知机的神奇魔法-点头深度学习网站

MLP-Mixer: 并肩卷积与自注意,多层感知机的神奇魔法

0.引言 MLP-Mixer模型是谷歌AI团队于2021年初发表的文章,题为MLP-Mixer: An all-MLP Architecture for Vision。在计算机视觉领域的历史上,卷积神经网络一直是首选的模型。然而最近,注意力机...
点点的头像-点头深度学习网站点点6个月前
05214
深度学习模型九大经典初始化方案-点头深度学习网站

深度学习模型九大经典初始化方案

1. 正态分布初始化 正态分布初始化将权重初始化为来自正态(或高斯)分布的随机数。该分布通常以0为均值,其标准差(或方差)可以根据网络的特定需求进行调整。这种方法在保证权重不会开始时过...
点点的头像-点头深度学习网站点点7个月前
07414
DenseNet:特征复用真香-点头深度学习网站

DenseNet:特征复用真香

0.引言 作为CVPR2017年的最佳论文,DenseNet模型脱离了通过加深网络层数(如VGGNet、ResNet)和加宽网络结构(如GoogLeNet)来提升网络性能的定式思维。转而从特征的角度考虑,通过特征重用和旁...
点点的头像-点头深度学习网站点点7个月前
06714
ViT:视觉Transformer-点头深度学习网站

ViT:视觉Transformer

0.引言 最初提出Transformer算法是为了解决自然语言处理领域的问题,Transformer在该领域获得了巨大的成功,几乎超越了循环神经网络模型(RNN),并成为自然语言处理领域的新一代基线模型。论文...
点点的头像-点头深度学习网站点点7个月前
010014
Cycle-Consistent Adversarial Networks(CycleGAN)-点头深度学习网站

Cycle-Consistent Adversarial Networks(CycleGAN)

引言 CycleGAN是一个革命性的技术,它在图像处理和计算机视觉领域开辟了新的可能性,尤其是在图像到图像的转换任务中。这项技术能够在没有成对示例的情况下,将一种风格的图像转换成另一种风格...
点点的头像-点头深度学习网站点点5个月前
08013
ZFNet:卷积原理的深度解析-点头深度学习网站

ZFNet:卷积原理的深度解析

0.引言 ZFNet模型是由Matthew D. Zeiler和Rob Fergus在AlexNet的基础上提出的大型卷积网络,获得了2013年ILSVRC图像分类竞赛的冠军。其错误率为11.19%,较去年的AlexNet下降了5%。ZFNet解...
点点的头像-点头深度学习网站点点7个月前
014812
编码器-解码器模型(Encoder-Decoder)-点头深度学习网站

编码器-解码器模型(Encoder-Decoder)

编码器-解码器模型简介 Encoder-Decoder算法是一种深度学习模型结构,广泛应用于自然语言处理(NLP)、图像处理、语音识别等领域。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。...
点点的头像-点头深度学习网站点点6个月前
05612