排序
演员-评论家模型
1 算法介绍:演员-评论家(Actor-Critic)模型 演员-评论家(Actor-Critic)模型是一种结合了基于值的方法和基于策略的方法的强化学习框架。这个模型的核心思想是将策略决策(演员)和值函数估...
VGGNet: 探索深度的力量
1.VGGNet模型总览 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员Karen Simonyan和Andrew Zisserman研发出了新的深度卷积神经网络:VGGNet,并在ILSVRC2...
卷积神经网络(CNN)算法详解
引言 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks, FNN),是深度学习的代表算法之一 。 对卷积神...
Cycle-Consistent Adversarial Networks(CycleGAN)
引言 CycleGAN是一个革命性的技术,它在图像处理和计算机视觉领域开辟了新的可能性,尤其是在图像到图像的转换任务中。这项技术能够在没有成对示例的情况下,将一种风格的图像转换成另一种风格...
神经网络层结构的意义与维度诅咒
神经网络的层级结构 之前的博文中讲解了神经网络算法和深度学习模型,读者们是否有疑问:为什么神经网络模型要有层级结构?深度学习模型为什么需要这么多的隐藏层? 答案很简单,这是算法分析数...
变分自编码器(VAE)算法详解
VAE模型简明指导 VAE最想解决的问题是如何构造编码器和解码器,使得图片能够编码成易于表示的形态,并且这一形态能够尽可能无损地解码回原真实图像。 这似乎听起来与PCA(主成分分析)有些相似...
强化学习基础概念
1 概念 在这个不断进步的技术世界中,强化学习(Reinforcement Learning, RL)作为机器学习的一个重要分支,正迅速发展成为理解人工智能(AI)和机器学习领域的关键。与传统的机器学习方法相比...
ViT:视觉Transformer
0.引言 最初提出Transformer算法是为了解决自然语言处理领域的问题,Transformer在该领域获得了巨大的成功,几乎超越了循环神经网络模型(RNN),并成为自然语言处理领域的新一代基线模型。论文...
ConvMixer: 创新之路,卷积与多层感知机的相互借鉴
0.引言 近年来,卷积神经网络一直是计算机视觉任务中的主要架构。然而,最近出现了基于Transformer模型的架构,例如ViT、Swin Transformer等,在许多任务中表现出引人注目的性能。相比于传统的...
SENet:通道维度的注意力机制
0.引言 SENet于2017.9提出,其通过显式地建模卷积特征通道之间的相互依赖性来提高网络的表示能力。即通道维度上的注意力机制。SE模块仅需微小的计算成本,却产生了显著的性能改进。SENet Block...