排序
Seq2Seq模型(Sequence to Sequence)
引言 Seq2Seq模型可以被认为是一种Encoder-Decoder模型的变体,其特别适用于处理序列到序列的任务,编码器将输入序列映射为一个固定长度的向量表示,解码器则使用这个向量表示来生成输出序列。...
基于价值的深度强化学习(DQN)
1 DQN介绍 要理解DQN,我们首先需要理解Q值。Q值是一个函数,Q(s, a)表示在状态s下执行动作a可以得到的预期奖励。直观上讲,Q值告诉智能体哪些动作在长期来看更有利。 Q学习的目标是找到最优的Q...
Graph Sample and Aggregate Network(GraphSAGE)
不管是GraphSAGE,还是GCN,它们的核心思想其实与朴素的GNN思想一致,都是每个节点根据图的连接结构,通过聚合邻居信息来更新自身节点的信息,再把更新后的节点向量送入神经网络层做进一步的学...
深度学习模型九大经典初始化方案
1. 正态分布初始化 正态分布初始化将权重初始化为来自正态(或高斯)分布的随机数。该分布通常以0为均值,其标准差(或方差)可以根据网络的特定需求进行调整。这种方法在保证权重不会开始时过...
Graph Attention Networks(GAT)
本章来学习一下图注意力网络GAT,首先对标GCN,来谈谈它们的优缺点。 GCN是处理transductive任务的一把利器,transductive任务是指:训练阶段与测试阶段都基于同样的图结构,如下图所示。 ...
ResNet:神来之“路”
0.引言 深度残差网络(Deep Residual Network, ResNet)的提出是基于卷积算法处理图像问题领域的一件里程碑事件。ResNet在2015年发表当年取得了图像分类、检测等5项大赛第一,并再次刷新了CNN模...
Swin Transformer:窗口化的Transformer
0.引言 Swin Transformer是2021年微软研究院发表在ICCV(International Conference on Computer Vision)上的一篇文章,并且已经获得ICCV 2021最佳论文(Best Paper)的荣誉称号。Swin Transfor...
Graph Convolutional Network(GCN)
这里先回顾一下之前讲解的朴素图神经网络,如下图: 朴素图神经网络 图中左上角方框部分可以看作图神经网络的初始状态。以 1 号节点为例, 在图神经网络中, 信息的传递是先汇聚一号节点的邻居节...
EfficientNet:轻量化网络
1.EfficientNetV1 EfficientNet源自Google Brain的论文EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks。从标题中可以看出,这篇论文最主要的创新点是模型缩放。论...
AS-MLP:注意力驱动下的多层感知机升级
0.引言 AS-MLP模型出自上海科技大学和腾讯优图实验室共同合作发表的文章,题为AS-MLP: AN AXIAL SHIFTED MLP ARCHITECTURE FOR VISION。纯MLP网络架构专注于全局的信息交流,却忽略了局部信息的...