排序
ConvMixer: 创新之路,卷积与多层感知机的相互借鉴
0.引言 近年来,卷积神经网络一直是计算机视觉任务中的主要架构。然而,最近出现了基于Transformer模型的架构,例如ViT、Swin Transformer等,在许多任务中表现出引人注目的性能。相比于传统的...
Swin Transformer:窗口化的Transformer
0.引言 Swin Transformer是2021年微软研究院发表在ICCV(International Conference on Computer Vision)上的一篇文章,并且已经获得ICCV 2021最佳论文(Best Paper)的荣誉称号。Swin Transfor...
ViT:视觉Transformer
0.引言 最初提出Transformer算法是为了解决自然语言处理领域的问题,Transformer在该领域获得了巨大的成功,几乎超越了循环神经网络模型(RNN),并成为自然语言处理领域的新一代基线模型。论文...
Transformer算法详解
算法简介 Transformer架构于2017年6月推出。最初的研究重点是自然语言处理领域的翻译任务。随后,几个具有影响力的模型被引入,包括: (1)2018年6月:GPT,第一个预训练的Transformer模型,用...
Seq2Seq模型(Sequence to Sequence)
引言 Seq2Seq模型可以被认为是一种Encoder-Decoder模型的变体,其特别适用于处理序列到序列的任务,编码器将输入序列映射为一个固定长度的向量表示,解码器则使用这个向量表示来生成输出序列。...
深度学习模型九大经典初始化方案
1. 正态分布初始化 正态分布初始化将权重初始化为来自正态(或高斯)分布的随机数。该分布通常以0为均值,其标准差(或方差)可以根据网络的特定需求进行调整。这种方法在保证权重不会开始时过...
卷积的九大变体算法
引言 卷积神经网络(CNN)的核心在于其多样化的卷积技术,每种技术针对不同的应用和性能需求有着独特的优势。逐通道卷积和逐点卷积关注单独通道的特征提取和通道间信息的融合。深度可分离卷积结...
EfficientNet:轻量化网络
1.EfficientNetV1 EfficientNet源自Google Brain的论文EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks。从标题中可以看出,这篇论文最主要的创新点是模型缩放。论...
RepVGG:新型卷积神经网络架构
1、设计动机 设计RepVGG的初衷是为了解决许多流行的深度学习模型在追求更高性能的过程中不断增加结构复杂性的问题。例如,为了提高性能,许多模型采用了如残差连接、瓶颈设计、组卷积等复杂设计...
ShuffleNet:轻量化网络
1. ShuffleNet V1 ShuffleNet V1是由旷视科技在2017年底为移动设备打造的轻量级卷积神经网络。其创新之处在于采用了组卷积(Group Convolution)和通道打散(Channel Shuffle)的方法,保证网络...