排序
图神经网络基础:图论
引言 图在我们身边随处可见;现实世界中的物体通常是以它们与其它事物的联系来定义的。一组物体以及它们之间的联系,都可以自然地表达为一个图。十多年来,研究人员已经开发了在图数据上操作的...
反向传播算法(Back Propagation)
反向传播算法 梯度下降和反向传播是神经网络训练过程中两个非常重要的概念,它们密切相关。梯度下降是一种常用的优化算法,它的目标是找到一个函数的最小值或最大值。在神经网络中,梯度下降算...
Transformer算法详解
算法简介 Transformer架构于2017年6月推出。最初的研究重点是自然语言处理领域的翻译任务。随后,几个具有影响力的模型被引入,包括: (1)2018年6月:GPT,第一个预训练的Transformer模型,用...
AS-MLP:注意力驱动下的多层感知机升级
0.引言 AS-MLP模型出自上海科技大学和腾讯优图实验室共同合作发表的文章,题为AS-MLP: AN AXIAL SHIFTED MLP ARCHITECTURE FOR VISION。纯MLP网络架构专注于全局的信息交流,却忽略了局部信息的...
Swin Transformer:窗口化的Transformer
0.引言 Swin Transformer是2021年微软研究院发表在ICCV(International Conference on Computer Vision)上的一篇文章,并且已经获得ICCV 2021最佳论文(Best Paper)的荣誉称号。Swin Transfor...
VAN:基于卷积实现的注意力
0.引言 虽然Transformer最初是为自然语言处理任务而设计的,但最近已经在各种计算机视觉领域掀起了风暴。然而,图像是有空间信息的二维数据,这给计算机视觉中应用Transformer带来了三个挑战: ...
MLP-Mixer: 并肩卷积与自注意,多层感知机的神奇魔法
0.引言 MLP-Mixer模型是谷歌AI团队于2021年初发表的文章,题为MLP-Mixer: An all-MLP Architecture for Vision。在计算机视觉领域的历史上,卷积神经网络一直是首选的模型。然而最近,注意力机...
编码器-解码器模型(Encoder-Decoder)
编码器-解码器模型简介 Encoder-Decoder算法是一种深度学习模型结构,广泛应用于自然语言处理(NLP)、图像处理、语音识别等领域。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。...
GPT-3:大语言模型的爆发
引言 在科技界,GPT3的热潮正如火如荼地展开。这类庞大的语言模型(比如GPT3)开始以它们惊人的能力让我们惊叹。虽然现在对于大多数企业来说,将它们直接应用于面对客户的业务中还不够可靠,但...
图神经网络:图的向量化
引言 图神经网络(Graph Neural Networks,GNNs)是一种专门用于处理图形数据的神经网络架构。图形数据是一种非欧几里得数据,其中主要包括节点(vertices)和边(edges),节点代表实体,边表...