排序
鲸鱼优化算法(Whale Optimization Algorithm)
算法背景 鲸鱼优化算法(Whale Optimization Algorithm, WOA)是一种模拟鲸鱼捕食行为的优化算法。想象一下,你在大海上划船,突然一只庞大的鲸鱼跃出水面。鲸鱼猎食主要依靠两种策略:一是环绕...
蝙蝠优化算法(bat optimization algorithm)
算法背景 蝙蝠优化算法(Bat Algorithm)是一种基于群体智能的优化算法,它的灵感来源于蝙蝠捕食时的回声定位行为。想象一下,夜幕降临,一群蝙蝠在黑暗中飞翔,它们发出超声波并依靠回声来定位...
图神经网络基础:图论
引言 图在我们身边随处可见;现实世界中的物体通常是以它们与其它事物的联系来定义的。一组物体以及它们之间的联系,都可以自然地表达为一个图。十多年来,研究人员已经开发了在图数据上操作的...
基于价值的深度强化学习(DQN)
1 DQN介绍 要理解DQN,我们首先需要理解Q值。Q值是一个函数,Q(s, a)表示在状态s下执行动作a可以得到的预期奖励。直观上讲,Q值告诉智能体哪些动作在长期来看更有利。 Q学习的目标是找到最优的Q...
基于策略的深度强化学习
1 算法介绍:基于策略的强化学习 想象一下,你正在教一个机器人学习如何走路。在基于策略的强化学习方法中,你直接告诉这个机器人在每一步该如何行动。这种指导是通过一个概率模型来实现的,即...
聚类算法之层次聚类 (Hierarchical Clustering)
层次聚类是一种非常独特和强大的聚类方法,与众多其他的聚类技术相比,它不仅为数据集提供了一个划分,还给出了一个层次结构,这在某些应用中是非常有价值的。在生物信息学、社会网络分析、市场...
聚类算法之DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
DBSCAN是在1990年代后期推出的一种聚类方法,它迅速成为基于密度的聚类技术中最受欢迎和广泛使用的算法之一。与传统的聚类方法如K-means不同,DBSCAN的主要优势在于其能够识别出任意形状的聚类...
线性回归算法
1.线性回归引言 回归分析是一种强大的统计方法,允许我们检查两个或多个变量之间的关系。通过这种分析,我们可以用一个或多个自变量来预测因变量的值。在机器学习和数据科学中,回归算法是一种...
图神经网络:图的向量化
引言 图神经网络(Graph Neural Networks,GNNs)是一种专门用于处理图形数据的神经网络架构。图形数据是一种非欧几里得数据,其中主要包括节点(vertices)和边(edges),节点代表实体,边表...
过拟合与欠拟合
过拟合与欠拟合 过拟合和欠拟合现象的定义 过拟合和欠拟合模型是深度学习模型在训练过程中比较容易出现的不好的现象。 当模型的表现能力弱于事件的真实表现时,会出现欠拟合现象。某个非线性模...