AI算法与模型共82篇
AI算法与模型模块深入探讨机器学习、优化算法和深度学习等人工智能的核心技术。通过详细的理论讲解与实战案例,帮助学习者理解各种算法的原理和应用,掌握如何构建和优化AI模型。无论是监督学习、无监督学习,还是神经网络的实现与优化,这里都提供了系统的学习资料~
机器学习简介-点头深度学习网站置顶

机器学习简介

1 机器学习基础 1.1 机器学习的定义与核心概念 为了更深入地理解机器学习,我们可以从以下核心概念入手: 数据驱动:机器学习完全依赖于数据。这些数据既可以是结构化的,如表格,也可以是非结...
点点的头像-点头深度学习网站点点6个月前
09316
扩散模型(Diffusion Model)-点头深度学习网站

扩散模型(Diffusion Model)

扩散模型的基本原理 Denoising Diffusion Probabilistic Models (DDPM) 是一种利用扩散过程来生成样本的深度学习模型。其主要的灵感来源于扩散过程,通过逐渐增加噪音来模糊一个初始的图像,并...
点点的头像-点头深度学习网站点点5个月前
015710
ZFNet:卷积原理的深度解析-点头深度学习网站

ZFNet:卷积原理的深度解析

0.引言 ZFNet模型是由Matthew D. Zeiler和Rob Fergus在AlexNet的基础上提出的大型卷积网络,获得了2013年ILSVRC图像分类竞赛的冠军。其错误率为11.19%,较去年的AlexNet下降了5%。ZFNet解...
点点的头像-点头深度学习网站点点7个月前
014812
降维算法之奇异值分解 (Singular Value Decomposition, SVD)-点头深度学习网站

降维算法之奇异值分解 (Singular Value Decomposition, SVD)

引言 在机器学习和数据分析领域,当数据的维度特别高时,处理和分析数据就会变得尤为困难。这是因为随着维度的增加,数据的稀疏性也会增加,这种现象被称为“维度的诅咒”。为了克服这个挑战,...
点点的头像-点头深度学习网站点点6个月前
014211
过拟合与欠拟合-点头深度学习网站

过拟合与欠拟合

过拟合与欠拟合 过拟合和欠拟合现象的定义 过拟合和欠拟合模型是深度学习模型在训练过程中比较容易出现的不好的现象。 当模型的表现能力弱于事件的真实表现时,会出现欠拟合现象。某个非线性模...
点点的头像-点头深度学习网站点点7个月前
013713
ConvMixer: 创新之路,卷积与多层感知机的相互借鉴-点头深度学习网站

ConvMixer: 创新之路,卷积与多层感知机的相互借鉴

0.引言 近年来,卷积神经网络一直是计算机视觉任务中的主要架构。然而,最近出现了基于Transformer模型的架构,例如ViT、Swin Transformer等,在许多任务中表现出引人注目的性能。相比于传统的...
点点的头像-点头深度学习网站点点6个月前
01279
AlexNet:深度学习崛起的标志-点头深度学习网站

AlexNet:深度学习崛起的标志

 1.AlexNet理论 AlexNet模型与LeNet模型有很多相似之处,它可以被看作是LeNet的改进版本,都由卷积层和全连接层构成。然而,AlexNet之所以能够在ImageNet比赛中大获成功,还要归功于其独特...
点点的头像-点头深度学习网站点点7个月前
011910
降维算法之主成分分析 (Principal Component Analysis, PCA)-点头深度学习网站

降维算法之主成分分析 (Principal Component Analysis, PCA)

主成分分析(PCA)是一种统计方法,用于减少数据的维度,同时尽量保留原始数据中的方差。PCA在机器学习和数据可视化中有着坚实的地位,因为它可以有效地简化数据,同时保留其核心特征。 1 算法...
点点的头像-点头深度学习网站点点6个月前
01166
聚类算法之DBSCAN (Density-Based Spatial Clustering of Applications with Noise)-点头深度学习网站

聚类算法之DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

DBSCAN是在1990年代后期推出的一种聚类方法,它迅速成为基于密度的聚类技术中最受欢迎和广泛使用的算法之一。与传统的聚类方法如K-means不同,DBSCAN的主要优势在于其能够识别出任意形状的聚类...
点点的头像-点头深度学习网站点点6个月前
011313
Graph Attention Networks(GAT)-点头深度学习网站

Graph Attention Networks(GAT)

本章来学习一下图注意力网络GAT,首先对标GCN,来谈谈它们的优缺点。 GCN是处理transductive任务的一把利器,transductive任务是指:训练阶段与测试阶段都基于同样的图结构,如下图所示。 ...
点点的头像-点头深度学习网站点点5个月前
011210
SENet:通道维度的注意力机制-点头深度学习网站

SENet:通道维度的注意力机制

0.引言 SENet于2017.9提出,其通过显式地建模卷积特征通道之间的相互依赖性来提高网络的表示能力。即通道维度上的注意力机制。SE模块仅需微小的计算成本,却产生了显著的性能改进。SENet Block...
点点的头像-点头深度学习网站点点7个月前
01096