排序
萤火虫优化算法(Firefly Algorithm)
算法背景 萤火虫优化算法,是由剑桥大学的Xin-She Yang在2009年提出的一种基于群体智能的优化算法。它的灵感来源于萤火虫在夜晚闪烁发光的行为。在自然界中,萤火虫通过发光来吸引配偶或猎物,...
ResNet:神来之“路”
0.引言 深度残差网络(Deep Residual Network, ResNet)的提出是基于卷积算法处理图像问题领域的一件里程碑事件。ResNet在2015年发表当年取得了图像分类、检测等5项大赛第一,并再次刷新了CNN模...
Wasserstein GAN
引言 WGAN,即Wasserstein GAN,旨在解决传统GAN训练中的一些问题,尤其是训练不稳定和梯度消失。WGAN通过使用Wasserstein距离(Earth-Mover距离或EM距离)来衡量真实数据分布和生成数据分布之...
Graph Sample and Aggregate Network(GraphSAGE)
不管是GraphSAGE,还是GCN,它们的核心思想其实与朴素的GNN思想一致,都是每个节点根据图的连接结构,通过聚合邻居信息来更新自身节点的信息,再把更新后的节点向量送入神经网络层做进一步的学...
BERT, ELMo大语言模型详解
引言 2018年,对于处理文本的机器学习模型来说,可谓是一个转折点(更准确地说,是自然语言处理或简称NLP领域)。我们对于如何最佳地表示词语和句子,以捕捉其潜在的含义和关系的理解正在迅速发...
降维算法之奇异值分解 (Singular Value Decomposition, SVD)
引言 在机器学习和数据分析领域,当数据的维度特别高时,处理和分析数据就会变得尤为困难。这是因为随着维度的增加,数据的稀疏性也会增加,这种现象被称为“维度的诅咒”。为了克服这个挑战,...
MetaFormer: 万法归一,构建未来的Transformer模板
0.引言 经过前几个MLP模型的介绍,相信很多读者都会思考一个问题:在计算机视觉任务中,哪种算法更适合呢?事实上,MetaFormer模型给出了答案:算法并不是最重要的,框架结构才是关键。MetaForm...
VGGNet: 探索深度的力量
1.VGGNet模型总览 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员Karen Simonyan和Andrew Zisserman研发出了新的深度卷积神经网络:VGGNet,并在ILSVRC2...
粒子群算法(Particle Swarm Optimization)
算法背景 粒子群优化算法(Particle Swarm Optimization,PSO)的灵感来源于鸟群或鱼群的觅食行为。想象一下,你在公园里看到一群鸟,它们在空中飞翔,寻找食物。每只鸟都不知道食物在哪里,但...
AlexNet:深度学习崛起的标志
1.AlexNet理论 AlexNet模型与LeNet模型有很多相似之处,它可以被看作是LeNet的改进版本,都由卷积层和全连接层构成。然而,AlexNet之所以能够在ImageNet比赛中大获成功,还要归功于其独特...