数据集加载与可视化
from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=60)
# Check out sample images
import matplotlib.pyplot as plt
fig, ax = plt.subplots(3, 5)
for i, axi in enumerate(ax.flat):
axi.imshow(faces.images[i], cmap='bone')
axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]])
![图片[1]-基于支持向量机(SVM)的人脸识别-点头深度学习网站](https://venusai-1311496010.cos.ap-beijing.myqcloud.com/wp-content/upload-images/2023/12/20231213201532500.png)
使用 PCA 和 SVC 构建模型
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
pca = PCA(n_components=150, whiten=True, random_state=42)
svc = SVC(kernel='rbf', class_weight='balanced')
model = make_pipeline(pca, svc)
# train, test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(faces['data'], faces['target'], test_size=0.2, random_state=42)
使用网格搜索 CV 查找最佳模型
from sklearn.model_selection import GridSearchCV
param_grid ={
'svc__C': [1, 5, 10, 15],
'svc__gamma': [0.0001, 0.0005, 0.001, 0.005],
}
grid = GridSearchCV(model, param_grid=param_grid, cv=5)
%time grid.fit(X_train, y_train)
![图片[2]-基于支持向量机(SVM)的人脸识别-点头深度学习网站](https://venusai-1311496010.cos.ap-beijing.myqcloud.com/wp-content/upload-images/2023/12/20231213201644489.png)
grid.best_params_
{'svc__C': 1, 'svc__gamma': 0.005}
grid.best_estimator_
![图片[3]-基于支持向量机(SVM)的人脸识别-点头深度学习网站](https://venusai-1311496010.cos.ap-beijing.myqcloud.com/wp-content/upload-images/2023/12/20231213201712275-1024x311.png)
使用最佳模型进行预测
final_model = grid.best_estimator_
y_pred = final_model.predict(X_test)
可视化数据
fig, ax = plt.subplots(4, 6)
for i, axi in enumerate(ax.flat):
axi.imshow(X_test[i].reshape(62, 47), cmap='bone')
axi.set(xticks=[], yticks=[])
axi.set_ylabel(faces.target_names[y_pred[i]].split()[-1],
color='black' if y_pred[i] == y_test[i] # correct label
else 'red') # incorrect label
fig.suptitle('Predicted Names; Incorrected Labels in Red', size=14);
模型评估指标
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred,
target_names=faces.target_names))
precision recall f1-score support
Ariel Sharon 0.90 0.75 0.82 12
Colin Powell 0.72 0.94 0.81 51
Donald Rumsfeld 0.88 0.88 0.88 25
George W Bush 0.97 0.88 0.92 98
Gerhard Schroeder 0.88 0.71 0.79 21
Hugo Chavez 0.85 0.73 0.79 15
Junichiro Koizumi 1.00 1.00 1.00 10
Tony Blair 0.90 0.92 0.91 38
accuracy 0.87 270
macro avg 0.89 0.85 0.86 270
weighted avg 0.89 0.87 0.88 270
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm = cm.T
print(cm)
import seaborn as sns
sns.heatmap(data=cm,
square=True,
annot=True,
cbar=False,
xticklabels=faces.target_names,
yticklabels=faces.target_names
);
plt.xlabel('True Labels')
plt.ylabel('Predicted Labels');
![图片[4]-基于支持向量机(SVM)的人脸识别-点头深度学习网站](https://venusai-1311496010.cos.ap-beijing.myqcloud.com/wp-content/upload-images/2023/12/20231213201812133.png)
项目资源下载
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END
暂无评论内容