影像方向 第2页
Vitis-AI量化编译MNIST手写数字识别-点头深度学习网站

Vitis-AI量化编译MNIST手写数字识别

项目背景 在当前的数字化时代,快速准确的手写数字识别技术在各个领域都发挥着越来越重要的作用,尤其是在银行、邮政服务和数字化存档等行业。这些应用常常要在资源受限的环境中运行,例如嵌入...
点点的头像-点头深度学习网站点点11个月前
01287
VAN:基于卷积实现的注意力-点头深度学习网站

VAN:基于卷积实现的注意力

0.引言 虽然Transformer最初是为自然语言处理任务而设计的,但最近已经在各种计算机视觉领域掀起了风暴。然而,图像是有空间信息的二维数据,这给计算机视觉中应用Transformer带来了三个挑战: ...
点点的头像-点头深度学习网站点点10个月前
0976
SENet:通道维度的注意力机制-点头深度学习网站

SENet:通道维度的注意力机制

0.引言 SENet于2017.9提出,其通过显式地建模卷积特征通道之间的相互依赖性来提高网络的表示能力。即通道维度上的注意力机制。SE模块仅需微小的计算成本,却产生了显著的性能改进。SENet Block...
点点的头像-点头深度学习网站点点11个月前
01546
ConvMixer: 创新之路,卷积与多层感知机的相互借鉴-点头深度学习网站

ConvMixer: 创新之路,卷积与多层感知机的相互借鉴

0.引言 近年来,卷积神经网络一直是计算机视觉任务中的主要架构。然而,最近出现了基于Transformer模型的架构,例如ViT、Swin Transformer等,在许多任务中表现出引人注目的性能。相比于传统的...
点点的头像-点头深度学习网站点点10个月前
01709
Transformer算法详解-点头深度学习网站

Transformer算法详解

算法简介 Transformer架构于2017年6月推出。最初的研究重点是自然语言处理领域的翻译任务。随后,几个具有影响力的模型被引入,包括: (1)2018年6月:GPT,第一个预训练的Transformer模型,用...
点点的头像-点头深度学习网站点点11个月前
0966
DenseNet:特征复用真香-点头深度学习网站

DenseNet:特征复用真香

0.引言 作为CVPR2017年的最佳论文,DenseNet模型脱离了通过加深网络层数(如VGGNet、ResNet)和加宽网络结构(如GoogLeNet)来提升网络性能的定式思维。转而从特征的角度考虑,通过特征重用和旁...
点点的头像-点头深度学习网站点点11个月前
010314
Wasserstein GAN-点头深度学习网站

Wasserstein GAN

引言 WGAN,即Wasserstein GAN,旨在解决传统GAN训练中的一些问题,尤其是训练不稳定和梯度消失。WGAN通过使用Wasserstein距离(Earth-Mover距离或EM距离)来衡量真实数据分布和生成数据分布之...
点点的头像-点头深度学习网站点点9个月前
06711
ConvNeXt:卷积与设计策略的新篇章-点头深度学习网站

ConvNeXt:卷积与设计策略的新篇章

0.引言 自从ViT模型被提出以后,在过去的几年里,Transformer在深度学习领域大杀四方。回顾近几年,在计算机视觉领域发表的文章绝大多数都是基于Transformer模型的,比如2021年ICCV的Best Paper...
点点的头像-点头深度学习网站点点10个月前
010415
ResNet:神来之“路”-点头深度学习网站

ResNet:神来之“路”

0.引言 深度残差网络(Deep Residual Network, ResNet)的提出是基于卷积算法处理图像问题领域的一件里程碑事件。ResNet在2015年发表当年取得了图像分类、检测等5项大赛第一,并再次刷新了CNN模...
点点的头像-点头深度学习网站点点11个月前
014111
AS-MLP:注意力驱动下的多层感知机升级-点头深度学习网站

AS-MLP:注意力驱动下的多层感知机升级

0.引言 AS-MLP模型出自上海科技大学和腾讯优图实验室共同合作发表的文章,题为AS-MLP: AN AXIAL SHIFTED MLP ARCHITECTURE FOR VISION。纯MLP网络架构专注于全局的信息交流,却忽略了局部信息的...
点点的头像-点头深度学习网站点点10个月前
09510