排序
ZFNet:卷积原理的深度解析
0.引言 ZFNet模型是由Matthew D. Zeiler和Rob Fergus在AlexNet的基础上提出的大型卷积网络,获得了2013年ILSVRC图像分类竞赛的冠军。其错误率为11.19%,较去年的AlexNet下降了5%。ZFNet解...
编码器-解码器模型(Encoder-Decoder)
编码器-解码器模型简介 Encoder-Decoder算法是一种深度学习模型结构,广泛应用于自然语言处理(NLP)、图像处理、语音识别等领域。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。...
Wasserstein GAN
引言 WGAN,即Wasserstein GAN,旨在解决传统GAN训练中的一些问题,尤其是训练不稳定和梯度消失。WGAN通过使用Wasserstein距离(Earth-Mover距离或EM距离)来衡量真实数据分布和生成数据分布之...
ResNet:神来之“路”
0.引言 深度残差网络(Deep Residual Network, ResNet)的提出是基于卷积算法处理图像问题领域的一件里程碑事件。ResNet在2015年发表当年取得了图像分类、检测等5项大赛第一,并再次刷新了CNN模...
VGGNet: 探索深度的力量
1.VGGNet模型总览 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员Karen Simonyan和Andrew Zisserman研发出了新的深度卷积神经网络:VGGNet,并在ILSVRC2...
MetaFormer: 万法归一,构建未来的Transformer模板
0.引言 经过前几个MLP模型的介绍,相信很多读者都会思考一个问题:在计算机视觉任务中,哪种算法更适合呢?事实上,MetaFormer模型给出了答案:算法并不是最重要的,框架结构才是关键。MetaForm...
AS-MLP:注意力驱动下的多层感知机升级
0.引言 AS-MLP模型出自上海科技大学和腾讯优图实验室共同合作发表的文章,题为AS-MLP: AN AXIAL SHIFTED MLP ARCHITECTURE FOR VISION。纯MLP网络架构专注于全局的信息交流,却忽略了局部信息的...
扩散模型(Diffusion Model)
扩散模型的基本原理 Denoising Diffusion Probabilistic Models (DDPM) 是一种利用扩散过程来生成样本的深度学习模型。其主要的灵感来源于扩散过程,通过逐渐增加噪音来模糊一个初始的图像,并...
EfficientNet:轻量化网络
1.EfficientNetV1 EfficientNet源自Google Brain的论文EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks。从标题中可以看出,这篇论文最主要的创新点是模型缩放。论...
AlexNet:深度学习崛起的标志
1.AlexNet理论 AlexNet模型与LeNet模型有很多相似之处,它可以被看作是LeNet的改进版本,都由卷积层和全连接层构成。然而,AlexNet之所以能够在ImageNet比赛中大获成功,还要归功于其独特...