排序
DenseNet:特征复用真香
0.引言 作为CVPR2017年的最佳论文,DenseNet模型脱离了通过加深网络层数(如VGGNet、ResNet)和加宽网络结构(如GoogLeNet)来提升网络性能的定式思维。转而从特征的角度考虑,通过特征重用和旁...
萤火虫优化算法(Firefly Algorithm)
算法背景 萤火虫优化算法,是由剑桥大学的Xin-She Yang在2009年提出的一种基于群体智能的优化算法。它的灵感来源于萤火虫在夜晚闪烁发光的行为。在自然界中,萤火虫通过发光来吸引配偶或猎物,...
SENet:通道维度的注意力机制
0.引言 SENet于2017.9提出,其通过显式地建模卷积特征通道之间的相互依赖性来提高网络的表示能力。即通道维度上的注意力机制。SE模块仅需微小的计算成本,却产生了显著的性能改进。SENet Block...
聚类算法总结
1. K均值(K-Means) 计算效率高,适合大数据集。 结果易于解释。 缺点: 需要预先设定聚类数量 K。 对异常值敏感。 假设聚类为凸形且各向同性,可能不适用于复杂形状的数据分布。 初始中心点的...
MobileNet:轻量化模型
1.MobileNet V1 MobileNet系列是由谷歌公司的Andrew G. Howard等人于2016年提出的轻量级网络结构,并于2017年发布在arXiv上。MobileNet系列的特点是模型小、计算速度快,适合部署到移动端或者嵌...
ResNet:神来之“路”
0.引言 深度残差网络(Deep Residual Network, ResNet)的提出是基于卷积算法处理图像问题领域的一件里程碑事件。ResNet在2015年发表当年取得了图像分类、检测等5项大赛第一,并再次刷新了CNN模...
GoogLeNet:探索宽度的力量
0.引言 在2014年的ImageNet挑战赛(ILSVRC14)上,GoogLeNet和VGGNet成为了当年的双雄。GoogLeNet获得了图片分类大赛的第一名,VGGNet紧随其后。这两种模型的共同特点是网络深度更深。VGGNet是...
ZFNet:卷积原理的深度解析
0.引言 ZFNet模型是由Matthew D. Zeiler和Rob Fergus在AlexNet的基础上提出的大型卷积网络,获得了2013年ILSVRC图像分类竞赛的冠军。其错误率为11.19%,较去年的AlexNet下降了5%。ZFNet解...
免疫优化算法(Immune Optimization Algorithm)
算法背景 免疫算法是一种模拟生物免疫系统的智能优化算法。想象一下,当我们的身体遇到病毒或细菌侵袭时,免疫系统会启动,通过识别、记忆、适应和清除来保护我们。就像我们的身体需要应对各种...
VGGNet: 探索深度的力量
1.VGGNet模型总览 2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员Karen Simonyan和Andrew Zisserman研发出了新的深度卷积神经网络:VGGNet,并在ILSVRC2...