排序
蝙蝠优化算法(bat optimization algorithm)
算法背景 蝙蝠优化算法(Bat Algorithm)是一种基于群体智能的优化算法,它的灵感来源于蝙蝠捕食时的回声定位行为。想象一下,夜幕降临,一群蝙蝠在黑暗中飞翔,它们发出超声波并依靠回声来定位...
基于注意力机制的循环神经网络(Attention-Based RNN)
算法原理 Attention-Based RNN 是一种基于注意力机制的 RNN 变体模型,它通过引入注意力机制来对序列中的不同部分进行加权,从而能够更好地捕捉序列数据中的重要信息。Attention-Based RNN...
粒子群算法(Particle Swarm Optimization)
算法背景 粒子群优化算法(Particle Swarm Optimization,PSO)的灵感来源于鸟群或鱼群的觅食行为。想象一下,你在公园里看到一群鸟,它们在空中飞翔,寻找食物。每只鸟都不知道食物在哪里,但...
支持向量机(SVM)
什么是SVM? SVM 是一类强大的用于分类和回归问题的监督学习算法。 在分类方面,SVM 可以被视为最大间隔线性分类器。 SVM 使用的目标明确鼓励低样本外误差(良好的泛化性能)。 通过最大化类的超...
MLP-Mixer: 并肩卷积与自注意,多层感知机的神奇魔法
0.引言 MLP-Mixer模型是谷歌AI团队于2021年初发表的文章,题为MLP-Mixer: An all-MLP Architecture for Vision。在计算机视觉领域的历史上,卷积神经网络一直是首选的模型。然而最近,注意力机...
f-GAN
引言 2016年的论文《f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization》引入了一种新的生成对抗网络(GAN)框架,名为f-GAN。这篇论文通过将传统的GAN训...
梯度下降算法(Gradient Descent)
算法引言 梯度下降算法,这个在机器学习中非常常见的算法,可以用下山的例子来形象地解释。想象一下,你在一座山的顶端,目标是要以最快的速度下到山底。但由于浓雾遮挡,你看不清整座山的轮廓...
k最邻近算法(K-Nearest Neighbors,KNN)
引言 基本概念: K-最近邻居(KNN)算法是一种基于实例的学习,它用于分类和回归。在分类中,一个对象的分类由其邻居的“多数投票”决定,即对象被分配到其k个最近邻居中最常见的类别中。 重要性...
遗传算法(Genetic Algorithm)
算法引言 遗传算法是一种模拟生物进化过程的搜索启发式算法。想象一下长颈鹿的进化过程:在古代,长颈鹿的祖先可能都有着不同长度的脖子。在食物竞争激烈的环境下,那些脖子较长、能够触及更高...
深度学习模型九大经典初始化方案
1. 正态分布初始化 正态分布初始化将权重初始化为来自正态(或高斯)分布的随机数。该分布通常以0为均值,其标准差(或方差)可以根据网络的特定需求进行调整。这种方法在保证权重不会开始时过...