最新发布第14页
排序
外卖配送时间预测项目
项目背景 外卖服务的兴起: 随着互联网技术和移动应用的发展,外卖成为一种日益普及的餐饮服务方式。顾客通过餐厅、杂货店的网站或移动应用,或通过外卖订餐公司下单。 配送方式的多样性: 根据地...
基于LSTM与Web部署的视频人物姿态预测项目
项目背景 这个项目的核心在于通过分析2D姿势数据来识别和分类人类和动物的活动。这种方法的独特之处在于它不依赖于更复杂的3D姿势数据或原始2D图像。相反,它使用一种特殊的人工智能网络,即长...
向量的线性组合
什么是向量 在上述讲解中,已经涉及了三个主要的数学系统:线性方程组、函数图形和矩阵。现在将介绍第四个系统:向量。线性代数的一个核心挑战是它涵盖了多个数学系统。要成功掌握线性代数,关...
Swin Transformer:窗口化的Transformer
0.引言 Swin Transformer是2021年微软研究院发表在ICCV(International Conference on Computer Vision)上的一篇文章,并且已经获得ICCV 2021最佳论文(Best Paper)的荣誉称号。Swin Transfor...
ShuffleNet:轻量化网络
1. ShuffleNet V1 ShuffleNet V1是由旷视科技在2017年底为移动设备打造的轻量级卷积神经网络。其创新之处在于采用了组卷积(Group Convolution)和通道打散(Channel Shuffle)的方法,保证网络...
基于XG-Boost B预测宫颈癌
在该项目中,构建并训练了 XG-Boost 分类器来预测一个人是否有患宫颈癌的风险。数据来自委内瑞拉加拉加斯“加拉加斯大学医院”的 858 名患者,包括怀孕次数、吸烟习惯、性传播疾病 (STD)、人口...
K邻居算法进行鸢尾花分类项目
项目简介:K邻居算法进行鸢尾花分类 概述 “K邻居算法进行鸢尾花分类”项目是一个基于机器学习的应用,旨在使用K最近邻(K-Nearest Neighbors, KNN)算法对鸢尾花数据集进行分类。该项目展示了...
岭回归与LASSO回归
引言 岭回归: 通过向线性回归中引入L2正则化项防止过拟合。 LASSO回归: 通过向线性回归中引入L1正则化项实现特征选择。 L1正则化与LASSO回归 L1正则化通过在损失函数中添加参数权重的绝对值和的...
决策树(Decision tree)
算法引言 决策树是一种非常直观的机器学习算法,它模仿了我们日常生活中的决策过程。想象一下,你要决定周末去哪里玩,这个决定可能会基于一系列问题:天气怎么样?交通方便吗?费用多少?根据...
Vitis-AI量化编译MNIST手写数字识别
项目背景 在当前的数字化时代,快速准确的手写数字识别技术在各个领域都发挥着越来越重要的作用,尤其是在银行、邮政服务和数字化存档等行业。这些应用常常要在资源受限的环境中运行,例如嵌入...