最新发布第6页
排序
使用 ANN 进行输电线路故障检测
项目背景 输电线路的重要性:输电线路在电力系统中至关重要,负责将电力从电源传输到配电网络。现代社会对可靠电力的需求呈指数级增长,因此输电线路的效率变得越来越重要。 挑战:电力系统由复...
Python:闭包
什么是闭包(Closure)? 在Python中,闭包是一个非常强大的概念。闭包,简而言之,是一个函数,它记住了其外部作用域中的变量,即使在该外部作用域已经执行完毕后。 闭包的构成 闭包通常涉及三...
线性回归算法
1.线性回归引言 回归分析是一种强大的统计方法,允许我们检查两个或多个变量之间的关系。通过这种分析,我们可以用一个或多个自变量来预测因变量的值。在机器学习和数据科学中,回归算法是一种...
基于策略的深度强化学习
1 算法介绍:基于策略的强化学习 想象一下,你正在教一个机器人学习如何走路。在基于策略的强化学习方法中,你直接告诉这个机器人在每一步该如何行动。这种指导是通过一个概率模型来实现的,即...
Improved GANs
“Improved Techniques for Training GANs”是一篇由Ian J. Goodfellow 和他的同事在 2016 年发表的论文,这篇论文对生成对抗网络(GANs)的训练过程做出了重要的改进和提议。这些改进主要集中...
萤火虫优化算法(Firefly Algorithm)
算法背景 萤火虫优化算法,是由剑桥大学的Xin-She Yang在2009年提出的一种基于群体智能的优化算法。它的灵感来源于萤火虫在夜晚闪烁发光的行为。在自然界中,萤火虫通过发光来吸引配偶或猎物,...
定积分与牛顿-莱布尼茨公式
牛顿-莱布尼茨公式提供了一种计算定积分的方法,即通过求取两个不定积分的差值。在机器学习中,这常常用于计算概率或期望值。例如在贝叶斯机器学习中,经常需要计算概率分布的期望值或方差。使...
编码器-解码器模型(Encoder-Decoder)
编码器-解码器模型简介 Encoder-Decoder算法是一种深度学习模型结构,广泛应用于自然语言处理(NLP)、图像处理、语音识别等领域。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。...
大市场销售预测项目
项目概述 这个项目的主要目标是分析BigMart的销售数据,从而预测不同产品在特定商店的销售额。通过这种方式,可以揭示影响销售的关键因素,并为商店的库存管理、定价策略和市场营销活动提供数据...
Python:模块,包,库
Python是一种广泛使用的高级编程语言,其强大之处部分源于其模块化的设计。理解模块、包和库之间的区别和联系对于有效地使用Python至关重要。 模块(Module) 模块是Python编程中最基本的组织单...