最新发布第12页
排序
聚类算法之层次聚类 (Hierarchical Clustering)
层次聚类是一种非常独特和强大的聚类方法,与众多其他的聚类技术相比,它不仅为数据集提供了一个划分,还给出了一个层次结构,这在某些应用中是非常有价值的。在生物信息学、社会网络分析、市场...
聚类算法之DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
DBSCAN是在1990年代后期推出的一种聚类方法,它迅速成为基于密度的聚类技术中最受欢迎和广泛使用的算法之一。与传统的聚类方法如K-means不同,DBSCAN的主要优势在于其能够识别出任意形状的聚类...
降维算法之t-SNE (t-Distributed Stochastic Neighbor Embedding)
t-SNE是一种用于探索高维数据结构的非线性降维技术。它特别适用于高维数据的可视化,因为它能够在低维空间中保留原始高维数据的局部结构。由于这个特性,t-SNE在机器学习和数据分析领域越来越受...
岭回归与LASSO回归
引言 岭回归: 通过向线性回归中引入L2正则化项防止过拟合。 LASSO回归: 通过向线性回归中引入L1正则化项实现特征选择。 L1正则化与LASSO回归 L1正则化通过在损失函数中添加参数权重的绝对值和的...
降维算法之主成分分析 (Principal Component Analysis, PCA)
主成分分析(PCA)是一种统计方法,用于减少数据的维度,同时尽量保留原始数据中的方差。PCA在机器学习和数据可视化中有着坚实的地位,因为它可以有效地简化数据,同时保留其核心特征。 1 算法...
降维算法之奇异值分解 (Singular Value Decomposition, SVD)
引言 在机器学习和数据分析领域,当数据的维度特别高时,处理和分析数据就会变得尤为困难。这是因为随着维度的增加,数据的稀疏性也会增加,这种现象被称为“维度的诅咒”。为了克服这个挑战,...
基于逻辑回归预测 NBA 新秀的职业生涯
预测 NBA 新秀的职业生涯寿命 该项目是使用 Scikit-learn 的二元分类模型来预测 NBA 新秀在提供一些信息(例如出场次数、助攻、抢断和失误等)的情况下是否会在联盟中持续服役 5 年。 数据集来...
脑卒风险预测项目
问题描述 脑卒中是全球范围内导致成年人死亡和长期残疾的主要原因之一。它发生时,大脑部分区域因血液供应中断而缺氧,导致脑细胞死亡。早期识别脑卒中的风险因素对于预防和降低脑卒中的发生率...
基于支持向量机(SVM)的人脸识别
数据集加载与可视化 from sklearn.datasets import fetch_lfw_people faces = fetch_lfw_people(min_faces_per_person=60) # Check out sample images import matplotlib.pyplot as plt fig, ax...
模拟退火(Simulated Annealing)
算法引言 模拟退火算法是一种启发式搜索算法,它受到物理学中固体物质退火过程的启发。在物理学中,退火是一种将材料加热至高温,然后缓慢冷却以减少材料内部应力的过程。在这个过程中,材料的...