最新发布第2页
排序
ConvMixer: 创新之路,卷积与多层感知机的相互借鉴
0.引言 近年来,卷积神经网络一直是计算机视觉任务中的主要架构。然而,最近出现了基于Transformer模型的架构,例如ViT、Swin Transformer等,在许多任务中表现出引人注目的性能。相比于传统的...
K邻居算法进行鸢尾花分类项目
项目简介:K邻居算法进行鸢尾花分类 概述 “K邻居算法进行鸢尾花分类”项目是一个基于机器学习的应用,旨在使用K最近邻(K-Nearest Neighbors, KNN)算法对鸢尾花数据集进行分类。该项目展示了...
降维算法之主成分分析 (Principal Component Analysis, PCA)
主成分分析(PCA)是一种统计方法,用于减少数据的维度,同时尽量保留原始数据中的方差。PCA在机器学习和数据可视化中有着坚实的地位,因为它可以有效地简化数据,同时保留其核心特征。 1 算法...
解决图片识别的深度学习模型集合
1. Introduction 本项目包含了自 AelxNet 以来经典的深度学习图像分类模型,大部分模型是基于卷积神经网络的,也有一部分是基于注意力机制的。 博客链接是对模型的介绍,会持续更新…. 在项目目...
Graph Attention Networks(GAT)
本章来学习一下图注意力网络GAT,首先对标GCN,来谈谈它们的优缺点。 GCN是处理transductive任务的一把利器,transductive任务是指:训练阶段与测试阶段都基于同样的图结构,如下图所示。 ...
基于价值的深度强化学习(DQN)
1 DQN介绍 要理解DQN,我们首先需要理解Q值。Q值是一个函数,Q(s, a)表示在状态s下执行动作a可以得到的预期奖励。直观上讲,Q值告诉智能体哪些动作在长期来看更有利。 Q学习的目标是找到最优的Q...
SENet:通道维度的注意力机制
0.引言 SENet于2017.9提出,其通过显式地建模卷积特征通道之间的相互依赖性来提高网络的表示能力。即通道维度上的注意力机制。SE模块仅需微小的计算成本,却产生了显著的性能改进。SENet Block...
定积分与牛顿-莱布尼茨公式
牛顿-莱布尼茨公式提供了一种计算定积分的方法,即通过求取两个不定积分的差值。在机器学习中,这常常用于计算概率或期望值。例如在贝叶斯机器学习中,经常需要计算概率分布的期望值或方差。使...
ViT:视觉Transformer
0.引言 最初提出Transformer算法是为了解决自然语言处理领域的问题,Transformer在该领域获得了巨大的成功,几乎超越了循环神经网络模型(RNN),并成为自然语言处理领域的新一代基线模型。论文...
图神经网络(GNN)
引言 图神经网络(Graph Neural Networks,GNNs)是一种专为图数据设计的深度学习模型。它们能够直接在图结构上操作,捕捉节点间的复杂关系和图的全局结构特征。图神经网络在多种任务中表现出色...