最新发布第2页
排序
EfficientNet:轻量化网络
1.EfficientNetV1 EfficientNet源自Google Brain的论文EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks。从标题中可以看出,这篇论文最主要的创新点是模型缩放。论...
聚类算法之DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
DBSCAN是在1990年代后期推出的一种聚类方法,它迅速成为基于密度的聚类技术中最受欢迎和广泛使用的算法之一。与传统的聚类方法如K-means不同,DBSCAN的主要优势在于其能够识别出任意形状的聚类...
聚类算法总结
1. K均值(K-Means) 计算效率高,适合大数据集。 结果易于解释。 缺点: 需要预先设定聚类数量 K。 对异常值敏感。 假设聚类为凸形且各向同性,可能不适用于复杂形状的数据分布。 初始中心点的...
Graph Attention Networks(GAT)
本章来学习一下图注意力网络GAT,首先对标GCN,来谈谈它们的优缺点。 GCN是处理transductive任务的一把利器,transductive任务是指:训练阶段与测试阶段都基于同样的图结构,如下图所示。 ...
降维算法之主成分分析 (Principal Component Analysis, PCA)
主成分分析(PCA)是一种统计方法,用于减少数据的维度,同时尽量保留原始数据中的方差。PCA在机器学习和数据可视化中有着坚实的地位,因为它可以有效地简化数据,同时保留其核心特征。 1 算法...
ViT:视觉Transformer
0.引言 最初提出Transformer算法是为了解决自然语言处理领域的问题,Transformer在该领域获得了巨大的成功,几乎超越了循环神经网络模型(RNN),并成为自然语言处理领域的新一代基线模型。论文...
SENet:通道维度的注意力机制
0.引言 SENet于2017.9提出,其通过显式地建模卷积特征通道之间的相互依赖性来提高网络的表示能力。即通道维度上的注意力机制。SE模块仅需微小的计算成本,却产生了显著的性能改进。SENet Block...
定积分与牛顿-莱布尼茨公式
牛顿-莱布尼茨公式提供了一种计算定积分的方法,即通过求取两个不定积分的差值。在机器学习中,这常常用于计算概率或期望值。例如在贝叶斯机器学习中,经常需要计算概率分布的期望值或方差。使...
图神经网络(GNN)
引言 图神经网络(Graph Neural Networks,GNNs)是一种专为图数据设计的深度学习模型。它们能够直接在图结构上操作,捕捉节点间的复杂关系和图的全局结构特征。图神经网络在多种任务中表现出色...
Graph Sample and Aggregate Network(GraphSAGE)
不管是GraphSAGE,还是GCN,它们的核心思想其实与朴素的GNN思想一致,都是每个节点根据图的连接结构,通过聚合邻居信息来更新自身节点的信息,再把更新后的节点向量送入神经网络层做进一步的学...