排序
泰勒公式与麦克劳林公式
泰勒公式\(P_n(x)\) 泰勒公式允许用多项式来近似复杂的函数,这在算法中有时用于简化计算。例如,在高斯过程回归和一些其他贝叶斯方法中,泰勒展开用于线性化关于后验的计算。 泰勒公式的本质是...
向量乘法
向量的点积和内积 记录:没有对2、3、N维向量的各种乘法计算的情况进行更细致的划分和讲解,如叉积只展示了两个三维向量的叉积计算。 向量的点积和内积(Inner Product, dot product),用\(\cd...
梯度与方向导数
梯度是机器学习中的核心概念,尤其是在优化中,梯度提供了一个方向,指明如何调整参数以最小化损失函数。在梯度下降算法中,使用梯度的负方向来更新模型的权重,以逐步减少误差。 梯度是一个向...
向量空间与向量的线性相关和线性无关
向量空间指的是线性组合的集合,例如\(b\)的向量空间是整个二维空间: $$\boldsymbol{b}=x_{1}\begin{bmatrix}2\\1\\ \end{bmatrix}+x_{2}\begin{bmatrix}-1\\1\\ \end{bmatrix}$$ 即:在二维空...
偏微分与全微分
在机器学习中,许多函数都是多变量的。需要知道每个输入变量的变化如何影响输出。偏微分正是用于这个目的的。例如,在线性回归中可能要最小化多变量函数(即损失函数)。偏微分指明每个权重的变...
线性方程组
线性方程组与矩阵 先从线性方程组开始讲起,线性方程组的一般形式如下所示: $$\left\{\begin{aligned}a_{11}x_1+a_{12}x_2+&\cdots +a_{1n}x_n=b_1\\a_{21}x_2+a_{22}x_2+&\cdots +a_{...
图神经网络基础:图论
引言 图在我们身边随处可见;现实世界中的物体通常是以它们与其它事物的联系来定义的。一组物体以及它们之间的联系,都可以自然地表达为一个图。十多年来,研究人员已经开发了在图数据上操作的...