排序
微分与函数的单调性、极值和凹凸性
函数单调性 函数单调性定义:若\(fx)\)在\((a,b)\)内可导,如果\(f'(x)>0\),那么函数在\((a,b)\)内单调递增;如果\(f'(x)<0\),那么函数在\((a.b)\)内单调递减。 用微分的定义(微分解释了...
矩阵乘法
叉乘(普通乘法) 矩阵乘法(Matmul Product)是两个矩形相乘的操作,其结果是另一个矩阵。定义如下: 设有两个矩阵\(\boldsymbol{A}\)和\(\boldsymbol{b}\),令\(\boldsymbol{A}\)是一个\(m\ti...
微积分的基本定理
微积分不仅研究一个函数更深刻的性质(即更精细的乘除法),还研究不同函数之间的关系。举一个圆的例子,如果已知圆的周长,怎么求面积? 积分近似求解圆面积 上图中,当知道周长求面积时就用到...
定积分与牛顿-莱布尼茨公式
牛顿-莱布尼茨公式提供了一种计算定积分的方法,即通过求取两个不定积分的差值。在机器学习中,这常常用于计算概率或期望值。例如在贝叶斯机器学习中,经常需要计算概率分布的期望值或方差。使...
不定积分和反导数
不定积分在机器学习中主要用于计算函数的原函数,尤其是在概率密度函数和累积分布函数之间的转换中。例如,在概率论和统计中,累积分布函数 (CDF) 是概率密度函数 (PDF) 的不定积分。对于某些模...
向量的线性组合
什么是向量 在上述讲解中,已经涉及了三个主要的数学系统:线性方程组、函数图形和矩阵。现在将介绍第四个系统:向量。线性代数的一个核心挑战是它涵盖了多个数学系统。要成功掌握线性代数,关...
向量与矩阵
向量的正交 两两正交的非零向量组成的向量组称为正交向量组,若\(a_{1},a_{2},\cdots,a_{r}\) 是两两正交的非零向量,则\(a_{1},a_{2},\cdots,a_{r}\) 线性无关。例如:己知三维空间\(R^{3}\) ...